论文标题
$ z = 0.5536 $的Short Grb 200522a的宽带对应物:发光的Kilonova或具有反向冲击的准直流?
The Broad-band Counterpart of the Short GRB 200522A at $z=0.5536$: A Luminous Kilonova or a Collimated Outflow with a Reverse Shock?
论文作者
论文摘要
我们介绍了Swift Short Grb 200522a的无线电余波和近红外(NIR)的发现,位于$ \ $ \ kpc的一小部分偏移量与年轻的,星形的主人银河系中心约1 $ kpc,价格为$ z = 0.5536美元。余辉的无线电和X射线照明与轴心宇宙学短GRB的灯光相一致。 NIR对应物在我们的HST观测值$ \ 2.3 $ days中揭示,其发光度为$ \ of(1.3-1.7)\ times 10^{42} $ erg S $^{ - 1} $。这大大低于轴上短的GRB余辉检测,但比GW170817的Kilonova高约8 $ - $ 17 $,比任何可比观测值都有的Kilonova候选者高得多。对应物的颜色($ i-y = -0.08 \ pm 0.21 $; REST-FRAME)和光度的组合不能仅通过标准放射性加热来解释。我们提出了两种情况,以解释GRB 200522a的广泛频段行为:一种与发光的Kilonova(可能由Magnetar Energy沉积增强的)或从$ \ of of 14^{\ octivalsivical的前进和逆转冲击的同步性向前冲击。模型包括增强放射性加热速率,低链苯胺质量分数或来自晚期中央发动机活动的其他加热来源的模型可能会提供可行的替代解释。如果确实在GRB 200522a中产生了稳定的磁铁,我们预测,在爆发后,可以检测到延迟的无线电排放$ \ $ \ 6 $ 6 $ 6 $ $ \ $ \ $ \ $ \ \ \ \ \ 10^{53} $ erg。与重力波事件相关的GRB 200522a具有类似的光度的对应物,可以检测到当前的光学搜索到$ \!250 $ MPC。
We present the discovery of the radio afterglow and near-infrared (NIR) counterpart of the Swift short GRB 200522A, located at a small projected offset of $\approx 1$ kpc from the center of a young, star-forming host galaxy at $z=0.5536$. The radio and X-ray luminosities of the afterglow are consistent with those of on-axis cosmological short GRBs. The NIR counterpart, revealed by our HST observations at a rest-frame time of $\approx2.3$ days, has a luminosity of $\approx (1.3-1.7) \times 10^{42}$ erg s$^{-1}$. This is substantially lower than on-axis short GRB afterglow detections, but is a factor of $\approx 8$-$17$ more luminous than the kilonova of GW170817, and significantly more luminous than any kilonova candidate for which comparable observations exist. The combination of the counterpart's color ($i-y = -0.08\pm 0.21$; rest-frame) and luminosity cannot be explained by standard radioactive heating alone. We present two scenarios to interpret the broad-band behavior of GRB 200522A: a synchrotron forward shock with a luminous kilonova (potentially boosted by magnetar energy deposition), or forward and reverse shocks from a $\approx14^{\circ}$, relativistic ($Γ_0 \gtrsim 80$) jet. Models which include a combination of enhanced radioactive heating rates, low-lanthanide mass fractions, or additional sources of heating from late-time central engine activity may provide viable alternate explanations. If a stable magnetar was indeed produced in GRB 200522A, we predict that late-time radio emission will be detectable starting $\approx 0.3$-$6$ years after the burst for a deposited energy of $\approx 10^{53}$ erg. Counterparts of similar luminosity to GRB 200522A associated with gravitational wave events will be detectable with current optical searches to $\approx\!250$ Mpc.