论文标题
神经网络启发化学动力学的配方
A Neural Network Inspired Formulation of Chemical Kinetics
论文作者
论文摘要
提出了一种将化学源术语计算施放到人工神经网络(ANN)启发形式的方法。这种方法非常适合用于依靠图形处理单元(GPU)的新兴超级计算平台。最终的方程式允许基于GPU友好型基质 - 型 - 源术语估计,其中指导尺寸(批量大小)可以解释为域中化学反应细胞的数量;因此,该方法可以很容易地在高保真求解器中进行调整,使MPI排名为给定数量的单元格到GPU的源术语计算任务。尽管此处显示的确切的ANN启发性重铸是对GPU环境的最佳选择,但这种解释使用户可以用训练有素的,所谓的近似ANN替换确切例程的部分,其中这些近似ANN的目标是提高计算效率,以提高准确的常规对应物。请注意,本文的主要目的不是将机器学习用于开发模型,而是使用ANN框架代表化学动力学。最终结果是几乎不需要训练,并且保留了源术语计算过程中ANN公式的GPU友好结构。使用在0-D自动点和1-D通道爆炸问题上具有不同复杂性的化学机制来证明该方法,并探讨了GPU上的性能细节。
A method which casts the chemical source term computation into an artificial neural network (ANN)-inspired form is presented. This approach is well-suited for use on emerging supercomputing platforms that rely on graphical processing units (GPUs). The resulting equations allow for a GPU-friendly matrix-multiplication based source term estimation where the leading dimension (batch size) can be interpreted as the number of chemically reacting cells in the domain; as such, the approach can be readily adapted in high-fidelity solvers for which an MPI rank offloads the source term computation task for a given number of cells to the GPU. Though the exact ANN-inspired recasting shown here is optimal for GPU environments as-is, this interpretation allows the user to replace portions of the exact routine with trained, so-called approximate ANNs, where the goal of these approximate ANNs is to increase computational efficiency over the exact routine counterparts. Note that the main objective of this paper is not to use machine learning for developing models, but rather to represent chemical kinetics using the ANN framework. The end result is that little-to-no training is needed, and the GPU-friendly structure of the ANN formulation during the source term computation is preserved. The method is demonstrated using chemical mechanisms of varying complexity on both 0-D auto-ignition and 1-D channel detonation problems, and the details of performance on GPUs are explored.