论文标题
使用第一原则计算机模拟的热镁的状态方程
Equation of State of Hot, Dense Magnesium Derived with First-PrinciplesComputer Simulations
论文作者
论文摘要
使用两种第一原理计算机仿真技术,路径积分蒙特卡洛和密度功能理论分子动力学,在温暖密集物质的状态下得出了镁状态的方程,密度范围为0.43至86.11〜g/cm $^3 $^3 $^3 $^,温度从20,000 k到20,000 k到$ 5 \ $ 5 \ $ 5 $ \ 5 $ k 8 $ k。这些条件与巨型行星和恒星的内部以及电击压缩测量和惯性限制融合实验有关。我们研究镁的电离机理和电子结构,这是密度和温度的函数。我们表明,L壳电子2s和2p的能带在高密度下合并。这导致L壳的逐渐电离,并随着密度和温度的升高。在这方面,MG与MGO不同,MGO也反映了其主要冲击Hugoniot曲线的形状。对于MG,我们预测一个单个宽压温度区域,其中电击压缩比约为4.9。因此,MG与Si和Al血浆不同,在L和K壳电离的Hugoniot曲线上表现出两个完善的压缩最大值。最后,我们研究了预热和预压的多种冲击和影响。
Using two first-principles computer simulation techniques, path integral Monte-Carlo and density functional theory molecular dynamics, we derive the equation of state of magnesium in the regime of warm dense matter, with densities ranging from 0.43 to 86.11~g/cm$^3$~and temperatures from 20,000 K to $5\times10^8$~K. These conditions are relevant for the interiors of giant planets and stars as well as for shock compression measurements and inertial confinement fusion experiments. We study ionization mechanisms and electronic structure of magnesium as a function of density and temperature. We show that the L shell electrons 2s and 2p energy bands merge at high density. This results into a gradual ionization of the L-shell with increasing density and temperature. In this regard, Mg differs from MgO, which is also reflected in the shape of its principal shock Hugoniot curve. For Mg, we predict a single broad pressure-temperature region where the shock compression ratio is approximately 4.9. Mg thus differs from Si and Al plasma that exhibit two well-separated compression maxima on the Hugoniot curve for L and K shell ionizations. Finally we study multiple shocks and effects of preheat and precompression.