论文标题

Poisson顶点的共同体学和泰特谎言谎言代数

Poisson Vertex Cohomology and Tate Lie Algebroids

论文作者

Bouaziz, Emile

论文摘要

我们研究了环的骨膜上的滑轮,并将其应用于\ cite {bdshk}中定义的复合物的研究,并在Holomorphic Roops to Poisson vertrop的空间上\ emph {poisson vertex algebra}结构的\ emph {poisson vertex algebra}结构进行了处理。我们用$ \ Mathcal {l}^{+} m $的局部紧凑拓扑(Alias \ emph {tate})滑轮的局部紧凑拓扑(Alias \ emph {tate})滑轮中相关的谎言式式对象的(连续)de rham-lie共同体描述了这种复合物。特别是,在$π$是符合性的情况下,我们可以轻松地计算上述的共同体 - 我们获得了$ m $的De Rham同谋。

We study sheaves on holomorphic spaces of loops and apply this to the study of the complex, defined in \cite{BdSHK}, governing deformations of the \emph{Poisson vertex algebra} structure on the space of holomorphic loops into a Poisson variety. We describe this complex in terms of the (continuous) de Rham-Lie cohomology of an associated Lie algebroid object in locally linearly compact topological (alias \emph{Tate}) sheaves of modules on $\mathcal{L}^{+}M$. In particular this allows us to easily compute the cohomology of the above in the case where $π$ is symplectic - we obtain de Rham cohomology of $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源