论文标题
在$σ_{k} $ - Nirenberg问题
On the $σ_{k}$-Nirenberg problem
论文作者
论文摘要
我们考虑了标准球上的$σ_k$ - curvature $ \ mathbb {s}^n $的问题,并使用$ n \ geq 3 $。当$ k \ geq n/2 $时,我们证明存在和紧凑定理。这扩展了Chang,Han和Yang的较早结果,价格为$ n = 4 $,$ k = 2 $。
We consider the problem of prescribing the $σ_k$-curvature on the standard sphere $\mathbb{S}^n$ with $n \geq 3$. We prove existence and compactness theorems when $k \geq n/2$. This extends an earlier result of Chang, Han and Yang for $n = 4$ and $k = 2$.