论文标题

Rashba-Zener机制用于纳米级天空和拓扑金属

Rashba-Zener mechanism for nanoscale skyrmions and topological metals

论文作者

Kathyat, Deepak S., Mukherjee, Arnob, Kumar, Sanjeev

论文摘要

我们报告了一种微观电子机制,用于纳米级的天空形成和拓扑金属。该机制依赖于将经典的双交换物理(DE)与Rashba旋转轨道耦合(SOC)相结合,不仅可以准确地了解天空的存在,而且还解释了小角度中子散射(SANS)和Lorentz Transveral Electron Microspopicy(LTEM)的关键特征(lorentz Translion Electron(Ltem)(LTEM)的薄膜薄膜薄膜的数据。天空状态的特征是通过明确计算BOTT INDEX和HALL电导率的无序拓扑金属。状态的局部密度(LDOS)显示出特征性的振荡,这些振荡被证明是由于限制效应和量规场诱导的Landau水平物理学的结合而产生的。没有外部磁通量的LDO中的振荡是Rashba-Zener(RZ)机制的直接结果。结果基于在明确保留巡回电子自由度的模型上的混合模拟。通过有效的短距离自旋模型提供了简单的物理图片,其耦合常数依赖于电子动能。这里报道的机制不仅开辟了一种新的方法来了解金属中的天空形成,而且还提供了一种指导原理,以发现外来拓扑金属状态。

We report a microscopic electronic mechanism for nanoscale skyrmion formation and topological metalicity. The mechanism, which relies on combining the classic double-exchange (DE) physics with the Rashba spin orbit coupling (SOC), not only provides an accurate understanding of existence of skyrmions but also explains key features in small angle neutron scattering (SANS) and Lorentz transmission electron microscopy (LTEM) data on thin films of a variety of magnetic metals. The skyrmion states are characterized as disordered topological metals via explicit calculations of Bott index and Hall conductivity. Local density of states (LDOS) display characteristic oscillations that are shown to be arising from a combination of confinement effect and gauge-field induced Landau level physics. The presence of oscillations in LDOS, without external magnetic flux, is a direct consequence of the Rashba-Zener (RZ) mechanism. The results are based on hybrid simulations on a model that explicitly retains itinerant electronic degrees of freedom. A simple physical picture is provided via an effective short-range spin model with coupling constants that depend on electronic kinetic energy. The mechanism reported here not only opens up a new approach to understand skyrmion formation in metals, but also provides a guiding principle for discovering exotic topological metal states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源