论文标题
用于多标签分类的实例感知图卷积网络
Instance-Aware Graph Convolutional Network for Multi-Label Classification
论文作者
论文摘要
图形卷积神经网络(GCN)通过基于数据的统计标签共发生引入标签依赖性,有效地提高了多标签图像识别任务。但是,在以前的方法中,标签相关是根据数据的统计信息计算的,因此对于所有样本而言相同,这使得标签的图表不足以处理众多图像实例之间的巨大变化。在本文中,我们提出了用于多标签分类的实例感知图卷积神经网络(IA-GCN)框架。总体而言,该子网络的两个融合分支参与了框架:一个全球分支对整个图像进行建模,并在利益区域(ROI)之间进行基于区域的分支探索依赖关系。为了在图形卷积中的实例意识扩散,而不是单独使用统计标签相关性,依赖图像依赖性的标签相关矩阵(LCM)融合了统计LCM和每个图像实例之一,而是构建用于图形推断的单个图像实例之一,以将标签的图形信息注入标签的自适应信息,以将标签 - 透明度的适应性信息注入该模型的模型。具体而言,通过基于检测到的ROI的标签得分来挖掘标签依赖性,可以获得每个图像的单个LCM。在此过程中,考虑ROI对多标签分类的贡献差异,引入了变异推理,以通过考虑其复杂分布来学习ROI的自适应缩放因素。最后,关于MS-Coco和VOC数据集的广泛实验表明,我们提出的方法的表现优于现有的最新方法。
Graph convolutional neural network (GCN) has effectively boosted the multi-label image recognition task by introducing label dependencies based on statistical label co-occurrence of data. However, in previous methods, label correlation is computed based on statistical information of data and therefore the same for all samples, and this makes graph inference on labels insufficient to handle huge variations among numerous image instances. In this paper, we propose an instance-aware graph convolutional neural network (IA-GCN) framework for multi-label classification. As a whole, two fused branches of sub-networks are involved in the framework: a global branch modeling the whole image and a region-based branch exploring dependencies among regions of interests (ROIs). For label diffusion of instance-awareness in graph convolution, rather than using the statistical label correlation alone, an image-dependent label correlation matrix (LCM), fusing both the statistical LCM and an individual one of each image instance, is constructed for graph inference on labels to inject adaptive information of label-awareness into the learned features of the model. Specifically, the individual LCM of each image is obtained by mining the label dependencies based on the scores of labels about detected ROIs. In this process, considering the contribution differences of ROIs to multi-label classification, variational inference is introduced to learn adaptive scaling factors for those ROIs by considering their complex distribution. Finally, extensive experiments on MS-COCO and VOC datasets show that our proposed approach outperforms existing state-of-the-art methods.