论文标题
在整个空间上存在部分定位的周期性周期性验证溶液和相关的KAM型结果
The existence of partially localized periodic-quasiperiodic solutions and related KAM-type results for elliptic equations on the entire space
论文作者
论文摘要
我们考虑方程$Δ_xu+u_ {yy}+f(u)= 0,\ x =(x_1,\ dots,x_n)\ in \ in \ mathbb {r}^n,\ y \ in \ mathbb {r},r} $ f'(0)<0 $,以及一些自然的额外条件。我们证明,该方程具有许多积极的解决方案(无视翻译),这些解决方案在$ x'=(x_1,\ dots,x_ {n-1})$中是径向对称的,并且以$ | x'| \ to \ to \ infty $的衰减,定期为$ x_n $ in $ x_n $,以及$ y $ y $ y $ y $。我们的分析也包括了更多一般方程的相关定理。我们的方法基于中心歧管和KAM型结果。
We consider the equation $Δ_x u+u_{yy}+f(u)=0,\ x=(x_1,\dots,x_N)\in\mathbb{R}^N,\ y\in \mathbb{R},$ where $N\geq 2$ and $f$ is a sufficiently smooth function satisfying $f(0)=0$, $f'(0)<0$, and some natural additional conditions. We prove that the equation possesses uncountably many positive solutions (disregarding translations) which are radially symmetric in $x'=(x_1,\dots,x_{N-1})$ and decaying as $|x'|\to\infty$, periodic in $x_N$, and quasiperiodic in $y$. Related theorems for more general equations are included in our analysis as well. Our method is based on center manifold and KAM-type results.