论文标题

关于逆函数的CCZ-等效性

On CCZ-equivalence of the inverse function

论文作者

Kölsch, Lukas

论文摘要

$ \ mathbb {f} _ {2^n} $上的倒数函数$ x \ mapsto x^{ - 1} $是加密术中研究最多的功能之一,因为它的广泛使用用作block ciphers的s-box。在本文中,我们表明,如果$ n \ geq 5 $,则与逆函数相当的每个功能已经与之相等。这证实了Budaghyan,Calderini和Villa的猜想。我们还证明,与逆函数等效的CCZ等效的每个排列已经相当于它。本文的大部分都致力于证明$ l_1(x^{ - 1})+l_2(x)$ over $ \ mathbb {f} _ {2^n} $,如果$ n \ geq 5 $,$ l_1,l_1,l_2 $是非Zero linear linear linear functions。在证明中,我们结合了Kloosterman总和,辅助组合学中的二次形式和工具。

The inverse function $x \mapsto x^{-1}$ on $\mathbb{F}_{2^n}$ is one of the most studied functions in cryptography due to its widespread use as an S-box in block ciphers like AES. In this paper, we show that, if $n\geq 5$, every function that is CCZ-equivalent to the inverse function is already EA-equivalent to it. This confirms a conjecture by Budaghyan, Calderini and Villa. We also prove that every permutation that is CCZ-equivalent to the inverse function is already affine equivalent to it. The majority of the paper is devoted to proving that there are no permutation polynomials of the form $L_1(x^{-1})+L_2(x)$ over $\mathbb{F}_{2^n}$ if $n\geq 5$, where $L_1,L_2$ are nonzero linear functions. In the proof, we combine Kloosterman sums, quadratic forms and tools from additive combinatorics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源