论文标题
宇宙弯曲的模型无关的约束:高还原标准蜡烛的更新哈勃图的含义
Model-independent constraints on cosmic curvature: implication from updated Hubble diagram of high-redshift standard candles
论文作者
论文摘要
宇宙曲率($ω_K$)是宇宙学的基本参数。在本文中,我们提出了一种改进的与模型无关的方法来约束宇宙曲率,该方法与哈勃参数$ h(z)$和光度距离$ d_l(z)$几何相关。使用目前最大的$ h(z)$样品中的样品以及从1598种类星体的UV和X射线照明之间的关系中的亮度距离$ d_l(z)$与新近编译的万神殿样本(包括1048 sne sne sne ia,31个独立的cosmic curvation $ shys coper cosing the the Redshe)(Z)的uv和X射线亮度之间的关系(Z)(Z)cosem coss $ω_kk(Z) $ 0.07 <z <2 $。我们对$ω_k(z)$的估计在当前观察精度的水平上与平面宇宙完全兼容。同时,我们发现,对于1598种类星体的哈勃图作为新型标准蜡烛,空间曲率被限制为$ω__k= 0.08 \ pm0.31 $。对于SNE IA观察的最新Pantheon样本,我们获得$ω_k= -0.02 \ PM0.14 $。与其他旨在独立于模型的空间曲率估计的方法相比,我们的分析还以竞争精度达到了约束。更有趣的是,建议在高红移区域中重建的曲率$ω_k$为负,这也与文献中模型依赖性约束的结果一致。在与模型无关的高斯过程方法(GP)的框架内,我们的重建演变(Z_K(Z)$)证实了此类发现,而无需假设特定形式。
The cosmic curvature ($Ω_k$) is a fundamental parameter for cosmology. In this paper, we propose an improved model-independent method to constrain the cosmic curvature, which is geometrically related to the Hubble parameter $H(z)$ and luminosity distance $D_L(z)$. Using the currently largest $H(z)$ sample from the well-known cosmic chronometers, as well as the luminosity distance $D_L(z)$ from the relation between the UV and X-ray luminosities of 1598 quasars and the newly-compiled Pantheon sample including 1048 SNe Ia, 31 independent measurements of the cosmic curvature $Ω_k(z)$ can be expected covering the redshift range of $0.07<z<2$. Our estimation of $Ω_k(z)$ is fully compatible with flat Universe at the current level of observational precision. Meanwhile, we find that, for the Hubble diagram of 1598 quasars as a new type of standard candle, the spatial curvature is constrained to be $Ω_k=0.08\pm0.31$. For the latest Pantheon sample of SNe Ia observations, we obtain $Ω_k= -0.02\pm0.14$. Compared to other approaches aiming for model-independent estimations of spatial curvature, our analysis also achieves constraints with competitive precision. More interestingly, it is suggested that the reconstructed curvature $Ω_k$ is negative in the high redshift region, which is also consistent with the results from the model-dependent constraints in the literature. Such findings are confirmed by our reconstructed evolution of $Ω_k(z)$, in the framework of a model-independent method of Gaussian processes (GP) without assuming a specific form.