论文标题

链接预测的多重图形关联规则

Multiplex Graph Association Rules for Link Prediction

论文作者

Coscia, Michele, Szell, Michael

论文摘要

多重网络使我们能够研究各种复杂的系统,在这些系统中,节点以多种方式相互连接,例如社交网络中的朋友,家人和同事关系。链接预测是网络分析的分支,使我们能够预测网络的未来状态:将来最有可能出现哪些新连接?在多重链接预测中,我们还问:哪种类型?由于最后一个问题无法通过经典链接预测无法接近,因此我们在这里调查了图形关联规则来告知多重链接预测的使用。我们通过通过多重图挖掘确定网络中的所有频繁模式来得出此类规则,然后通过在原始网络中找到每个规则的出现来评分每个未观察到的链接的可能性。关联规则为多重链接预测添加了新的能力:预测新的节点到达,考虑具有四个或多个节点的高阶结构,并有效。在我们的实验中,我们表明,利用图形关联规则,我们能够实现接近理想合奏分类器的预测性能。此外,我们在签名的多重网络上进行案例研究,以显示图形关联规则如何提供有价值的见解以扩展社会平衡理论。

Multiplex networks allow us to study a variety of complex systems where nodes connect to each other in multiple ways, for example friend, family, and co-worker relations in social networks. Link prediction is the branch of network analysis allowing us to forecast the future status of a network: which new connections are the most likely to appear in the future? In multiplex link prediction we also ask: of which type? Because this last question is unanswerable with classical link prediction, here we investigate the use of graph association rules to inform multiplex link prediction. We derive such rules by identifying all frequent patterns in a network via multiplex graph mining, and then score each unobserved link's likelihood by finding the occurrences of each rule in the original network. Association rules add new abilities to multiplex link prediction: to predict new node arrivals, to consider higher order structures with four or more nodes, and to be memory efficient. In our experiments, we show that, exploiting graph association rules, we are able to achieve a prediction performance close to an ideal ensemble classifier. Further, we perform a case study on a signed multiplex network, showing how graph association rules can provide valuable insights to extend social balance theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源