论文标题
弹性模量波动预测眼镜的波衰减率
Elastic moduli fluctuations predict wave attenuation rates in glasses
论文作者
论文摘要
弹性波的障碍诱导的衰减对于玻璃的通用低温特性至关重要。最近的文献对低频限制($ω\!\ to \!0 $)的波衰减率$γ(ω)$的缩放均具有相互矛盾的看法,又对其对玻璃历史和属性的依赖性。一个理论框架 - 称为波动弹性理论(FET) - 预测$ d $空间维度的低频雷利散射缩放缩放尺度,$γ(ω)\!\!\ sim \ sim \ sim \!γ\,ω^{d+1} $弹性模量的波动,涉及相关卷$ v _ {\ rm c} $的相关卷。在这里,使用广泛的计算机模拟,我们表明$γ(ω)\!\ sim \!γ\,ω^3 $在二维($ d \!= \!2 $)上是渐近地满足的,一旦$ v _ {$ v plosement而不是空间 - v plosement $ v plosement $ v plosement $ v plosement。在这样做时,我们还确定了弹性模量的有限尺寸的集合统计量是异常的,并且与柔软的准化模式状态的通用$ω^4 $密度有关。这些结果不仅强烈支持FET,而且还构成了由粗粒剂方法对弹性模量的空间分布产生的统计数据的严格基准。
The disorder-induced attenuation of elastic waves is central to the universal low-temperature properties of glasses. Recent literature offers conflicting views on both the scaling of the wave attenuation rate $Γ(ω)$ in the low-frequency limit ($ω\!\to\!0$), and on its dependence on glass history and properties. A theoretical framework -- termed Fluctuating Elasticity Theory (FET) -- predicts low-frequency Rayleigh scattering scaling in $d$ spatial dimensions, $Γ(ω)\!\sim\!γ\,ω^{d+1}$, where $γ\!=\!γ(V_{\rm c})$ quantifies the coarse-grained spatial fluctuations of elastic moduli, involving a correlation volume $V_{\rm c}$ that remains debated. Here, using extensive computer simulations, we show that $Γ(ω)\!\sim\!γ\,ω^3$ is asymptotically satisfied in two dimensions ($d\!=\!2$) once $γ$ is interpreted in terms of ensemble -- rather than spatial -- averages, where $V_{\rm c}$ is replaced by the system size. In so doing, we also establish that the finite-size ensemble-statistics of elastic moduli is anomalous and related to the universal $ω^4$ density of states of soft quasilocalized modes. These results not only strongly support FET, but also constitute a strict benchmark for the statistics produced by coarse-graining approaches to the spatial distribution of elastic moduli.