论文标题

problèmesde plongement finis sur les corps non commutatifs

Problèmes de plongement finis sur les corps non commutatifs

论文作者

Behajaina, Angelot, Deschamps, Bruno, Legrand, François

论文摘要

我们将有限的嵌入问题扩展到了Fields(反向Galois理论中的一个核心概念)上,以在其中心$ h $上偏斜田地$ h $ h $。首先,我们表明,在$ h $上解决有限的嵌入问题等同于找到解决多项式约束的$ h $上的某些有限嵌入问题的解决方案。接下来,我们表明,如果$ h $是一个足够的领域,则每个稳定的有限分嵌入嵌入问题$ h(t)$ a $ h(t)$都有解决方案。这是POP的深层结果的非交换类似物。更普遍地,我们在某些自动形态的有限订单的$ H $σ$σ$σ$σ$σ$σ$σ$σ$σ$ f的情况下解决了扭曲多项式环$ h [t,σ] $的分数$ h(t,σ)$的有限嵌入问题。我们的结果扩展了对偏斜场上的逆向加洛伊斯问题的先前工作。

We extend finite embedding problems over fields, a central notion in inverse Galois theory, to the situation of a skew field $H$ of finite dimension over its center $h$. First, we show that solving a finite embedding problem over $H$ is equivalent to finding a solution to some finite embedding problem over $h$ fulfilling a polynomial constraint. Next, we show that every constant finite split embedding problem over the skew field of fractions $H(t)$ with central indeterminate $t$ has a solution, if $h$ is an ample field. This is a non-commutative analogue of a deep result of Pop. More generally, we solve such finite embedding problems over the skew field of fractions $H(t, σ)$ of the twisted polynomial ring $H[t, σ]$, for some automorphisms $σ$ of $H$ of finite order. Our results extend previous works on the inverse Galois problem over skew fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源