论文标题

直接网络:用于定量双能CT成像的统一相互域材料分解网络

DIRECT-Net: a unified mutual-domain material decomposition network for quantitative dual-energy CT imaging

论文作者

Su, Ting, Sun, Xindong, Zhang, Yikun, Wu, Haodi, Chen, Jianwei, Yang, Jiecheng, Chen, Yang, Zheng, Hairong, Liang, Dong, Ge, Yongshuai

论文摘要

通过在不同的X射线光谱上获取两组层析成像测量,双能CT(DECT)可以实现定量材料特异性成像。但是,常规分解的材料基础图像可能会遇到严重的图像噪声扩增和伪影,从而导致图像质量降低并降低定量精度。迭代DECT图像重建算法包含正式图或CT图像先验信息在噪声和伪影抑制中显示了潜在的优势,但是由于大量计算资源的费用,延长的重建时间以及繁琐的算法参数的手动选择。为了部分克服这些局限性,我们开发了一个域转化,启用了端到端深卷积神经网络(Direct-NET),以执行高质量的DECT材料分解。具体而言,所提出的直接网络可以立即访问相互域数据,并利用堆叠的卷积神经网络(CNN)层来减少降噪和材料分解。训练数据是基于DECT成像的基本物理学进行数值模拟的。XCAT数字幻影,碘溶液幻影和生物样品用于验证直接网络的性能。定性和定量的结果表明,这个新开发的直接网络在抑制噪声,提高图像精度并减少未来DECT成像的计算时间方面有希望。

By acquiring two sets of tomographic measurements at distinct X-ray spectra, the dual-energy CT (DECT) enables quantitative material-specific imaging. However, the conventionally decomposed material basis images may encounter severe image noise amplification and artifacts, resulting in degraded image quality and decreased quantitative accuracy. Iterative DECT image reconstruction algorithms incorporating either the sinogram or the CT image prior information have shown potential advantages in noise and artifact suppression, but with the expense of large computational resource, prolonged reconstruction time, and tedious manual selections of algorithm parameters. To partially overcome these limitations, we develop a domain-transformation enabled end-to-end deep convolutional neural network (DIRECT-Net) to perform high quality DECT material decomposition. Specifically, the proposed DIRECT-Net has immediate accesses to mutual-domain data, and utilizes stacked convolution neural network (CNN) layers for noise reduction and material decomposition. The training data are numerically simulated based on the underlying physics of DECT imaging.The XCAT digital phantom, iodine solutions phantom, and biological specimen are used to validate the performance of DIRECT-Net. The qualitative and quantitative results demonstrate that this newly developed DIRECT-Net is promising in suppressing noise, improving image accuracy, and reducing computation time for future DECT imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源