论文标题

DIR-DBTNET:3D数字乳房合成成像的深层迭代重建网络

DIR-DBTnet: Deep iterative reconstruction network for 3D digital breast tomosynthesis imaging

论文作者

Su, Ting, Deng, Xiaolei, Wang, Zhenwei, Yang, Jiecheng, Chen, Jianwei, Zheng, Hairong, Liang, Dong, Ge, Yongshuai

论文摘要

目的:这项研究的目的是开发一种新颖的深度学习(DL)重建框架,以改善数字乳房合成(DBT)成像性能。方法:在这项工作中,DIR-DBTNET是通过在深度学习框架内展开标准迭代重建算法来开发DBT图像重建的。特别是,此类网络通过使用大量模拟DBT数据自动学习正常化程序和迭代参数。之后,使用数值和实验数据来评估其性能。定量指标(例如伪影扩散功能(ASF),乳房密度和信号差异比(SDNR))用于图像质量评估。结果:对于数值和实验数据,与过滤后的背光(FBP)和总变化(TV)方法相比,所提出的DIR-DBTNET可产生平面内阴影伪像和平面外部伪像。从数值上,从数值数据中测得的ASF曲线的全宽度最大(FWHM)分别比使用FBP和TV方法获得的ASF曲线分别小于33.4%和19.7%。网络重建的DBT图像的乳房密度更准确,并且与地面真相一致。结论:总而言之,已经提出了深层迭代重建网络Dir-Dbtnet。数值和实验结果的定性和定量分析都比FBP和迭代算法都表现出优越的DBT成像性能。

Purpose: The goal of this study is to develop a novel deep learning (DL) based reconstruction framework to improve the digital breast tomosynthesis (DBT) imaging performance. Methods: In this work, the DIR-DBTnet is developed for DBT image reconstruction by unrolling the standard iterative reconstruction algorithm within the deep learning framework. In particular, such network learns the regularizer and the iteration parameters automatically through network training with a large amount of simulated DBT data. Afterwards, both numerical and experimental data are used to evaluate its performance. Quantitative metrics such as the artifact spread function (ASF), breast density, and the signal difference to noise ratio (SDNR) are used for image quality assessment. Results: For both numerical and experimental data, the proposed DIR-DBTnet generates reduced in-plane shadow artifacts and out-of-plane artifacts compared with the filtered back projection (FBP) and total variation (TV) methods. Quantitatively, the full width half maximum (FWHM) of the measured ASF curve from the numerical data is 33.4% and 19.7% smaller than those obtained with the FBP and TV methods, respectively; the breast density of the network reconstructed DBT images is more accurate and consistent with the ground truth. Conclusions: In conclusion, a deep iterative reconstruction network, DIR-DBTnet, has been proposed. Both qualitative and quantitative analyses of the numerical and experimental results show superior DBT imaging performance than the FBP and iterative algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源