论文标题

椭圆形铅笔和离散集成系统的Manin涉及

Manin involutions for elliptic pencils and discrete integrable systems

论文作者

Petrera, Matteo, Suris, Yuri B., Wei, Kangning, Zander, Rene

论文摘要

我们为平面生物图产生的离散集成系统的代数几何研究做出了贡献: (a)我们发现椭圆铅笔的Manin涉及的几何描述,这些椭圆形铅笔由高度的曲线组成,同等等同于立方铅笔(索引1的Halphen铅笔)和 (b)我们表征了基点的特殊几何形状,以确保Manin相关的某些组成是低度(二次Cremona图)的可集成图。特别是,我们将一些可集成的Kahan离散化视为高度椭圆铅笔的Manin参与的组成。

We contribute to the algebraic-geometric study of discrete integrable systems generated by planar birational maps: (a) we find geometric description of Manin involutions for elliptic pencils consisting of curves of higher degree, birationally equivalent to cubic pencils (Halphen pencils of index 1), and (b) we characterize special geometry of base points ensuring that certain compositions of Manin involutions are integrable maps of low degree (quadratic Cremona maps). In particular, we identify some integrable Kahan discretizations as compositions of Manin involutions for elliptic pencils of higher degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源