论文标题
用于零拍学习的属性原型网络
Attribute Prototype Network for Zero-Shot Learning
论文作者
论文摘要
从零拍学习研究的开头,视觉属性已被证明起着重要作用。为了更好地将基于属性的知识从已知类别传输到未知类别,我们认为具有集成属性本地化能力的图像表示将对零摄像学习有益。为此,我们提出了一个新颖的零弹性表示学习框架,该框架仅使用类级属性共同学习歧视性的全球和局部特征。虽然视觉语义嵌入层学习了全局特征,但通过属性原型网络学习了本地特征,该特征同时回归并从中间功能中解散属性。我们表明,我们的当地增强图像表示形式在三个零局学习基准上实现了新的最先进。作为另一个好处,我们的模型指出了图像中属性的视觉证据,例如对于CUB数据集,确认图像表示的改进属性本地化能力。
From the beginning of zero-shot learning research, visual attributes have been shown to play an important role. In order to better transfer attribute-based knowledge from known to unknown classes, we argue that an image representation with integrated attribute localization ability would be beneficial for zero-shot learning. To this end, we propose a novel zero-shot representation learning framework that jointly learns discriminative global and local features using only class-level attributes. While a visual-semantic embedding layer learns global features, local features are learned through an attribute prototype network that simultaneously regresses and decorrelates attributes from intermediate features. We show that our locality augmented image representations achieve a new state-of-the-art on three zero-shot learning benchmarks. As an additional benefit, our model points to the visual evidence of the attributes in an image, e.g. for the CUB dataset, confirming the improved attribute localization ability of our image representation.