论文标题

多尺度快照:动态图中时间摘要的视觉分析

Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic Graphs

论文作者

Cakmak, Eren, Schlegel, Udo, Jäckle, Dominik, Keim, Daniel, Schreck, Tobias

论文摘要

大规模动态图的概述驱动的视觉分析提出了一个重大挑战。我们提出了多尺度快照,这是一种视觉分析方法,用于分析多个时间尺度的动态图的时间摘要。首先,我们递归生成时间摘要,将图形的重叠序列抽象成紧凑的快照。其次,我们将图形嵌入在快照中应用于每个图的序列的低维表示,以加快特定的分析任务(例如,相似性搜索)。第三,我们将不断发展的数据从粗糙到细粒状快照到半自动分析时间状态,趋势和异常值。该方法使能够发现类似的时间摘要(例如,重复状态),减少时间数据以加快自动分析,并探索动态图的结构和时间属性。我们通过定量评估以及对现实世界数据集的应用来证明我们方法的有用性。

The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables to discover similar temporal summaries (e.g., recurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源