论文标题

捐赠:皮肤病变细分的双重客观网络

DONet: Dual Objective Networks for Skin Lesion Segmentation

论文作者

Wang, Yaxiong, Wei, Yunchao, Qian, Xueming, Zhu, Li, Yang, Yi

论文摘要

皮肤病变细分是皮肤镜图像的计算机辅助诊断中的关键步骤。在过去的几年中,基于深度学习的语义分割方法显着提高了皮肤病变分割结果。但是,由于某些具有挑战性的因素,例如各种各样的病变量表以及病变区域和背景之间的歧义差异,目前的性能仍然不令人满意。在本文中,我们提出了一个简单而有效的框架,称为双物镜网络(捐赠),以改善皮肤病变细分。我们的捐赠者采用两个对称解码器来产生不同的预测,以实现不同的目标。具体而言,这两个目标实际上是由不同的损失函数定义的。通过这种方式,鼓励两个解码器产生差异化的概率图以匹配不同的优化目标,从而相应地进行了互补的预测。这两个目标所学到的互补信息将进一步汇总在一起,以做出最终预测,通过这些预测,可以大大减轻分割图中存在的不确定性。此外,为了应对皮肤镜图像中各种各样的病变量表和形状的挑战,我们还提出了一个反复的上下文编码模块(RCEM),以模拟皮肤病变之间的复杂相关性,其中具有不同尺度上下文的特征有效地集成了以形成更强大的表述。对两个流行基准的广泛实验很好地证明了拟议的捐赠者的有效性。特别是,我们的捐赠者分别在ISIC 2018和$ \ text {ph}^2 $上获得0.881和0.931骰子得分。代码将公开可用。

Skin lesion segmentation is a crucial step in the computer-aided diagnosis of dermoscopic images. In the last few years, deep learning based semantic segmentation methods have significantly advanced the skin lesion segmentation results. However, the current performance is still unsatisfactory due to some challenging factors such as large variety of lesion scale and ambiguous difference between lesion region and background. In this paper, we propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation. Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives. Concretely, the two objectives are actually defined by different loss functions. In this way, the two decoders are encouraged to produce differentiated probability maps to match different optimization targets, resulting in complementary predictions accordingly. The complementary information learned by these two objectives are further aggregated together to make the final prediction, by which the uncertainty existing in segmentation maps can be significantly alleviated. Besides, to address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM) to model the complex correlation among skin lesions, where the features with different scale contexts are efficiently integrated to form a more robust representation. Extensive experiments on two popular benchmarks well demonstrate the effectiveness of the proposed DONet. In particular, our DONet achieves 0.881 and 0.931 dice score on ISIC 2018 and $\text{PH}^2$, respectively. Code will be made public available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源