论文标题

基于力矩的框架下的全球化分布在强大的优化问题上

Globalized distributionally robust optimization problems under the moment-based framework

论文作者

Ding, Ke-wei, Huang, Nan-jing, Wang, Lei

论文摘要

本文致力于减少分布在强大优化的保守主义,并使用矩信息。由于需要在给定的歧义分布集中所有不确定分布的分布鲁棒优化的最佳解决方案,因此最佳解决方案的保守性是不可避免的。为了解决此问题,我们介绍了全球化的分布强大的对应物(GDRC),该分布允许通过真实分布的功能距离控制到内部不确定性分布集的限制违规行为。在基于力矩的框架下,我们获得了几种GDRC的确定性等效形式。要具体而言,我们分别显示了具有可分离距离函数和共同凸距函数的二阶矩信息下GDRC的不等式的确定性等效系统。此外,可行的系统集合是凸。我们还在一阶时刻和支持信息下为GDRC制定了确定性的同等不平等。针对这些GDRC提供了可计算的示例。给出了投资组合优化问题的数值测试,以表明我们的方法的效率,结果表明,与分布稳健的溶液相比,全球化分布稳健的解决方案是非保守和灵活的。

This paper is devoted to reduce the conservatism of distributionally robust optimization with moments information. Since the optimal solution of distributionally robust optimization is required to be feasible for all uncertain distributions in a given ambiguity distribution set and so the conservatism of the optimal solution is inevitable. To address this issue, we introduce the globalized distributionally robust counterpart (GDRC) which allows constraint violations controlled by functional distance of the true distribution to the inner uncertainty distribution set. We obtain the deterministic equivalent forms for several GDRCs under the moment-based framework. To be specific, we show the deterministic equivalent system of inequalities for the GDRCs under second order moment information with a separable distance function and a jointly convex distance function, respectively. Moreover, the feasible set of the system is convex. We also develop the deterministic equivalent inequality for the GDRC under first order moment and support information. The computationally tractable examples are presented for these GDRCs. A numerical tests of a portfolio optimization problem is given to show the efficiency of our methods and the results demonstrate that the globalized distributionally robust solutions is non-conservative and flexible compared to the distributionally robust solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源