论文标题
$ f(q)$模拟theta功能的系数和分区等级的应用程序的范围
Bounds for Coefficients of the $f(q)$ Mock Theta Function and Applications to Partition Ranks
论文作者
论文摘要
我们计算$α(n)$的有效界限,这是Ramunujan的Mock Theta函数$ F(Q)的傅立叶系数,该函数利用有限的代数公式,这是由于Bruinier和Schwagenscheidt而引起的。然后,我们使用这些边界来证明HOU和JAGADEESAN的两个猜想在均匀和奇数分区级别计数函数的凸度和最大乘法属性上。
We compute effective bounds for $α(n)$, the Fourier coefficients of Ramunujan's mock theta function $f(q)$ utilizing a finite algebraic formula due to Bruinier and Schwagenscheidt. We then use these bounds to prove two conjectures of Hou and Jagadeesan on the convexity and maximal multiplicative properties of the even and odd partition rank counting functions.