论文标题
带有区域和盒子级注释的显着实例分割
Salient Instance Segmentation with Region and Box-level Annotations
论文作者
论文摘要
显着实例细分是一项新的具有挑战性的任务,在显着性检测区域受到广泛关注。新一代的显着性检测为视频监视提供了强大的理论和技术基础。由于现有数据集的规模有限和高掩码注释的成本,因此迫切需要大量的监督来源来培训良好的显着实例模型。在本文中,我们旨在通过不进行的监督培训一个新颖的显着实例细分框架,而无需诉诸于费力的标签。为此,我们提出了一个环状全局上下文显着实例分割网络(CGCNET),该实例网络(CGCNET)是通过从现成的显着对象检测数据集中从显着区域和边界框的组合进行监督的。为了更准确地定位显着实例,提出了一个全局特征精炼层,该图层扩展了感兴趣区域(ROI)到场景中的全局上下文的特征。同时,标签更新方案嵌入了建议的框架中,以更新粗粒标签以进行下一个迭代。实验结果表明,通过不精确注释训练的拟议的端到端框架可能与现有的完全监督的显着实例细分方法具有竞争力。如果没有铃铛和口哨声,我们提出的方法在dataset1k的测试集中达到了58.3%的掩码AP,该掩膜表现优于主流最新方法。
Salient instance segmentation is a new challenging task that received widespread attention in the saliency detection area. The new generation of saliency detection provides a strong theoretical and technical basis for video surveillance. Due to the limited scale of the existing dataset and the high mask annotations cost, plenty of supervision source is urgently needed to train a well-performing salient instance model. In this paper, we aim to train a novel salient instance segmentation framework by an inexact supervision without resorting to laborious labeling. To this end, we present a cyclic global context salient instance segmentation network (CGCNet), which is supervised by the combination of salient regions and bounding boxes from the ready-made salient object detection datasets. To locate salient instance more accurately, a global feature refining layer is proposed that dilates the features of the region of interest (ROI) to the global context in a scene. Meanwhile, a labeling updating scheme is embedded in the proposed framework to update the coarse-grained labels for next iteration. Experiment results demonstrate that the proposed end-to-end framework trained by inexact supervised annotations can be competitive to the existing fully supervised salient instance segmentation methods. Without bells and whistles, our proposed method achieves a mask AP of 58.3% in the test set of Dataset1K that outperforms the mainstream state-of-the-art methods.