论文标题

混合模型中非参数最大似然估计量的自我调查特性

Self-regularizing Property of Nonparametric Maximum Likelihood Estimator in Mixture Models

论文作者

Polyanskiy, Yury, Wu, Yihong

论文摘要

由Kiefer和Wolfowitz \ Cite {KW56}引入的,非参数最大似然估计量(NPMLE)是一种用于学习混合物Odels和经验贝叶斯估计的广泛使用的方法。 NPMLE避开混合物可能性中的非凸度,通过在概率度量的空间中最大化总似然来估计混合分布,这可以看作是过度参数化的极端形式。 在本文中,我们发现了NPMLE解决方案的令人惊讶的属性。例如,考虑在真实线上具有subgaussian混合分布的高斯混合模型。利用复杂的分析技术,我们表明,具有较高的概率,NPMLE基于尺寸$ n $的样本具有$ o(\ log n)$原子(群众点),从而显着改善了由于lindsay \ cite \ cite {lindsay1983geometry1}的确定性上限$ n $。值得注意的是,任何这样的高斯混合物在统计上与$ o(\ log n)$组件的有限混合物都无法区分(对于某些混合物而言,这很紧)。因此,没有任何明确的模型选择形式,NPMLE会自动选择正确的模型复杂性,这是我们术语\ emph {self Regularization}的属性。给出了向其他指数家庭的扩展。作为统计应用,我们表明可以利用这种结构性特性来引导(参数)MLE的现有Hellinger风险,以将有限的高斯混合物绑定到NPMLE到NPMLE的General Gaussian混合物,从而恢复了Zhang \ cite {ZhangCite {Zhang2009Generalized}的结果。

Introduced by Kiefer and Wolfowitz \cite{KW56}, the nonparametric maximum likelihood estimator (NPMLE) is a widely used methodology for learning mixture odels and empirical Bayes estimation. Sidestepping the non-convexity in mixture likelihood, the NPMLE estimates the mixing distribution by maximizing the total likelihood over the space of probability measures, which can be viewed as an extreme form of overparameterization. In this paper we discover a surprising property of the NPMLE solution. Consider, for example, a Gaussian mixture model on the real line with a subgaussian mixing distribution. Leveraging complex-analytic techniques, we show that with high probability the NPMLE based on a sample of size $n$ has $O(\log n)$ atoms (mass points), significantly improving the deterministic upper bound of $n$ due to Lindsay \cite{lindsay1983geometry1}. Notably, any such Gaussian mixture is statistically indistinguishable from a finite one with $O(\log n)$ components (and this is tight for certain mixtures). Thus, absent any explicit form of model selection, NPMLE automatically chooses the right model complexity, a property we term \emph{self-regularization}. Extensions to other exponential families are given. As a statistical application, we show that this structural property can be harnessed to bootstrap existing Hellinger risk bound of the (parametric) MLE for finite Gaussian mixtures to the NPMLE for general Gaussian mixtures, recovering a result of Zhang \cite{zhang2009generalized}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源