论文标题
反击哈密顿人的固定散射理论
Stationary scattering theory for repulsive Hamiltonians
论文作者
论文摘要
在本文中,我们讨论了令人反感的哈密顿人的固定散射理论。我们显示了固定波算子的存在和完整性以及散射矩阵的单位性。此外,我们完全表征了广义本征函数的渐近行为,其散射基质的生长最小。在我们的论点中,限制分解的辐射条件起着主要作用。实际上,它用于构建固定波算子。
In the present paper we discuss stationary scattering theory for repulsive Hamiltonians. We show the existence and completeness of stationary wave operators and unitarity of the scattering matrix. Moreover we completely characterize asymptotic behaviors of generalized eigenfunctions with minimal growth in terms of the scattering matrix. In our argument the radiation condition bounds for limiting resolvents play major roles. In fact, it is used to construct the stationary wave operators.