论文标题

帕累托最佳投影搜索(POPS):通过直接搜索帕累托表面的自动放射治疗治疗计划

Pareto Optimal Projection Search (POPS): Automated Radiation Therapy Treatment Planning by Direct Search of the Pareto Surface

论文作者

Huang, Charles, Yang, Yong, Panjwani, Neil, Boyd, Stephen, Xing, Lei

论文摘要

目的:放射治疗治疗计划是一个耗时的,迭代的过程,具有潜在的型号间变异性。完全自动化的治疗计划过程可以减少计划者的主动治疗计划时间并消除分支间的变异性,从而极大地改善患者的离职和护理质量。在开发用于治疗计划的全自动算法时,我们有两个主要目标:制定计划是1)帕累托最佳和2)在临床上可接受的。在这里,我们提出了Pareto最佳投影搜索(POPS)算法,该算法为直接搜索Pareto前部提供了一个通用框架。方法:我们的POPS算法是一种新型的自动化计划方法,结合了两个主要搜索过程:1)在决策变量空间中无梯度的搜索和2)使用分配方法将决策变量投射到Pareto Front。我们通过与临床治疗计划进行比较来证明POP的性能。作为治疗计划质量的一种可能定量度量,我们构建了从先前开发的一般评估度量(GEM)修改的临床可接受性评分函数(SF)。结果:在临床工作流程的一部分收集的21例前列腺病例的数据集上,我们提出的POPS算法产生了帕累托最佳计划,这些计划在临床上可以接受,剂量符合性,剂量同质性和风险危机的差异。结论:我们提出的POPS算法为全自动治疗计划提供了一个一般框架,该计划可实现临床上可接受的剂量质量,而无需人工计划者的积极计划。意义:我们的全自动POPS算法解决了其他自动化计划方法的许多关键局限性,我们预计它将大大改善治疗计划工作流程。

Objective: Radiation therapy treatment planning is a time-consuming, iterative process with potentially high inter-planner variability. Fully automated treatment planning processes could reduce a planner's active treatment planning time and remove inter-planner variability, with the potential to tremendously improve patient turnover and quality of care. In developing fully automated algorithms for treatment planning, we have two main objectives: to produce plans that are 1) Pareto optimal and 2) clinically acceptable. Here, we propose the Pareto optimal projection search (POPS) algorithm, which provides a general framework for directly searching the Pareto front. Methods: Our POPS algorithm is a novel automated planning method that combines two main search processes: 1) gradient-free search in the decision variable space and 2) projection of decision variables to the Pareto front using the bisection method. We demonstrate the performance of POPS by comparing with clinical treatment plans. As one possible quantitative measure of treatment plan quality, we construct a clinical acceptability scoring function (SF) modified from the previously developed general evaluation metric (GEM). Results: On a dataset of 21 prostate cases collected as part of clinical workflow, our proposed POPS algorithm produces Pareto optimal plans that are clinically acceptable in regards to dose conformity, dose homogeneity, and sparing of organs-at-risk. Conclusion: Our proposed POPS algorithm provides a general framework for fully automated treatment planning that achieves clinically acceptable dosimetric quality without requiring active planning from human planners. Significance: Our fully automated POPS algorithm addresses many key limitations of other automated planning approaches, and we anticipate that it will substantially improve treatment planning workflow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源