论文标题

学习有条件的欧元兼容性的元组兼容性

Learning Tuple Compatibility for Conditional OutfitRecommendation

论文作者

Yang, Xuewen, Xie, Dongliang, Wang, Xin, Yuan, Jiangbo, Ding, Wanying, Yan, Pengyun

论文摘要

服装建议需要一些具有挑战性的兼容性问题的答案,例如“哪一双靴子和书包搭配我的牛仔裤和毛衣很好?”。它比传统的相似性搜索更为复杂,不仅需要考虑视觉美学,​​而且还需要考虑时尚项目的内在细粒度和多类特性。某些现有方法通过连续模型或项目之间的成对距离来解决问题。但是,其中大多数仅在定义时尚兼容性时考虑粗略的类别信息,同时忽略了实际应用中通常需要的细粒类别信息。为了更好地定义时尚兼容性并更灵活地满足不同的需求,我们提出了一个新颖的问题,即在多个元组中学习兼容性(每个元素组成),并推荐按客户提供类别选择的时尚项目。我们的贡献包括:1)设计混合类别的注意网(MCAN),该网络将细粒度和粗大的类别信息集成到建议中,并了解时尚元组之间的兼容性。 McAn可以根据需要明确有效地产生多样化和可控的建议。 2)贡献一个新的数据集IQON,该数据集遵循东方文化,可用于测试推荐系统的概括。我们在参考数据集PolyVore和数据集IQON上进行的广泛实验表明,我们的方法显着优于最先进的建议方法。

Outfit recommendation requires the answers of some challenging outfit compatibility questions such as 'Which pair of boots and school bag go well with my jeans and sweater?'. It is more complicated than conventional similarity search, and needs to consider not only visual aesthetics but also the intrinsic fine-grained and multi-category nature of fashion items. Some existing approaches solve the problem through sequential models or learning pair-wise distances between items. However, most of them only consider coarse category information in defining fashion compatibility while neglecting the fine-grained category information often desired in practical applications. To better define the fashion compatibility and more flexibly meet different needs, we propose a novel problem of learning compatibility among multiple tuples (each consisting of an item and category pair), and recommending fashion items following the category choices from customers. Our contributions include: 1) Designing a Mixed Category Attention Net (MCAN) which integrates both fine-grained and coarse category information into recommendation and learns the compatibility among fashion tuples. MCAN can explicitly and effectively generate diverse and controllable recommendations based on need. 2) Contributing a new dataset IQON, which follows eastern culture and can be used to test the generalization of recommendation systems. Our extensive experiments on a reference dataset Polyvore and our dataset IQON demonstrate that our method significantly outperforms state-of-the-art recommendation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源