论文标题
单光非高斯测量光相估计
Single-shot non-Gaussian Measurements for Optical Phase Estimation
论文作者
论文摘要
对具有最小不确定性的物理系统的性质估计是量子计量学的核心任务。光相估计位于许多计量任务的中心,其中物理参数的值映射到电磁场的相位,并且必须对该阶段进行单次测量。尽管有一些测量值能够估算出具有小不确定性的单个镜头中的光阶段,但对于连贯状态的未知阶段来说,近距离的单发测量表明仍然难以捉摸。在这里,我们提出并展示了对超越杂差测量敏感性极限的相干状态的单次测量策略,并接近连贯状态的cramer-rao下限。这些单发估计策略基于对相干位移操作的实时优化,单光子计数,并分辨率分辨率和快速反馈。我们表明,我们对这些优化估计策略的演示超过了广泛的光功能的杂差极限,而无需校正以适度的自适应测量步骤纠正检测效率。据我们所知,这是在光学相干状态中编码的未知阶段最敏感的单发测量。
Estimation of the properties of a physical system with minimal uncertainty is a central task in quantum metrology. Optical phase estimation is at the center of many metrological tasks where the value of a physical parameter is mapped to the phase of an electromagnetic field, and single-shot measurements of this phase are necessary. While there are measurements able to estimate the phase of light in a single shot with small uncertainties, demonstrations of near-optimal single-shot measurements for an unknown phase of a coherent state remain elusive. Here, we propose and demonstrate strategies for single-shot measurements for ab initio phase estimation of coherent states that surpass the sensitivity limit of heterodyne measurement and approach the Cramer-Rao lower bound for coherent states. These single-shot estimation strategies are based on real-time optimization of coherent displacement operations, single photon counting with photon number resolution, and fast feedback. We show that our demonstration of these optimized estimation strategies surpasses the heterodyne limit for a wide range of optical powers without correcting for detection efficiency with a moderate number of adaptive measurement steps. This is, to our knowledge, the most sensitive single-shot measurement of an unknown phase encoded in optical coherent states.