论文标题

层次平均场$ \ mathbb {t} $操作员在电磁散射上的界限:近场辐射purcell增强的上限

Hierarchical Mean-Field $\mathbb{T}$ Operator Bounds on Electromagnetic Scattering: Upper Bounds on Near-Field Radiative Purcell Enhancement

论文作者

Molesky, Sean, Chao, Pengning, Rodriguez, Alejandro W.

论文摘要

我们展示了散射理论的核心平等,即$ \ mathbb {t} $运算符的定义,可用于生成平均场约束的层次结构,这些层次结构是对标准电磁设计的自然补充,该问题是优化对自由度结构的一定目标的优化目标。概念证明应用于在结构化介质的附近最大化辐射purcell增强的问题,这是结构化介质的附近源,这是许多感应和量子技术的核心,其效果通常比所有当前框架都更高的范围更大,从而突出了这些模型的不变范围,从而使这些模型的变化范围不同。与域的分解和多网格方法密切相关,在波浪物理的任何分支中都可以使用相似的结构,这为对电磁范围以外的基本限制的系统评估铺平了道路。

We show how the central equality of scattering theory, the definition of the $\mathbb{T}$ operator, can be used to generate hierarchies of mean-field constraints that act as natural complements to the standard electromagnetic design problem of optimizing some objective with respect to structural degrees of freedom. Proof-of-concept application to the problem of maximizing radiative Purcell enhancement for a dipolar current source in the vicinity of a structured medium, an effect central to many sensing and quantum technologies, yields performance bounds that are frequently more than an order of magnitude tighter than all current frameworks, highlighting the irreality of these models in the presence of differing domain and field-localization length scales. Closely related to domain decomposition and multi-grid methods, similar constructions are possible in any branch of wave physics, paving the way for systematic evaluations of fundamental limits beyond electromagnetism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源