论文标题

算术几何形状中的分布关系和逆函数定理

The Distribution Relation and Inverse Function Theorem in Arithmetic Geometry

论文作者

Matsuzawa, Yohsuke, Silverman, Joseph H.

论文摘要

我们研究代数和算术几何形状中的算术分布关系和逆函数定理,重点是可以在品种和地图家族中统一应用的版本。特别是,我们证明了逆函数定理的两个显式版本,这是可能具有独立关注的一般分布和分离不平等的第一个版本,第二种是通过仔细实施经典的牛顿迭代的。

We study arithmetic distribution relations and the inverse function theorem in algebraic and arithmetic geometry, with an emphasis on versions that can be applied uniformly across families of varieties and maps. In particular, we prove two explicit versions of the inverse function theorem, the first via general distribution and separation inequalities that may be of independent interest, the second via a careful implementation of classical Newton iteration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源