论文标题
关于$ r^n $的歧管嵌入空间的合理同型类型
On the rational homotopy type of embedding spaces of manifolds in $R^n$
论文作者
论文摘要
我们研究欧几里得空间中歧管的嵌入空间。更确切地说,我们看一下将这些空间纳入浸入空间的同质纤维。作为主要结果,我们通过组合定义的$ l_ \ infty $ - 代数的嵌入空间的连接组件的合理同拷贝类型。
We study the spaces of embeddings of manifolds in a Euclidean space. More precisely we look at the homotopy fiber of the inclusion of these spaces to the spaces of immersions. As a main result we express the rational homotopy type of connected components of those embedding spaces through combinatorially defined $L_\infty$-algebras of diagrams.