论文标题

COVID-19使用随时间变化的SIR模型的风险估计

COVID-19 Risk Estimation using a Time-varying SIR-model

论文作者

Kiamari, Mehrdad, Ramachandran, Gowri, Nguyen, Quynh, Pereira, Eva, Holm, Jeanne, Krishnamachari, Bhaskar

论文摘要

政策制定者需要数据驱动的工具来评估COVID-19的传播,并持续向公众告知其感染风险。我们提出了一种严格的混合模型和DATA驱动的方法,以随时间变化的爵士流行模型进行风险评分,最终为每个社区产生简化的颜色编码的风险水平。我们提出的风险评分$γ_T$与目前健康的人在接下来的24小时内被感染的可能性成正比。我们展示了如何使用另一个有用的感染差异,$ r_t $,时间变化的平均繁殖数量来估算这种风险评分,这表明感染者会依次感染的个体平均数量。所提出的方法还允许在置信区间的$ r_t $和$γ_T$的估计中量化不确定性。我们努力的代码和数据已经开源,并正在用于评估和传达洛杉矶市和县感染的风险。

Policy-makers require data-driven tools to assess the spread of COVID-19 and inform the public of their risk of infection on an ongoing basis. We propose a rigorous hybrid model-and-data-driven approach to risk scoring based on a time-varying SIR epidemic model that ultimately yields a simplified color-coded risk level for each community. The risk score $Γ_t$ that we propose is proportional to the probability of someone currently healthy getting infected in the next 24 hours. We show how this risk score can be estimated using another useful metric of infection spread, $R_t$, the time-varying average reproduction number which indicates the average number of individuals an infected person would infect in turn. The proposed approach also allows for quantification of uncertainty in the estimates of $R_t$ and $Γ_t$ in the form of confidence intervals. Code and data from our effort have been open-sourced and are being applied to assess and communicate the risk of infection in the City and County of Los Angeles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源