论文标题
$ z $ - 打结和$ z $ - 均匀的三角形
$Z$-knotted and $Z$-homogeneous triangulations of surfaces
论文作者
论文摘要
如果三角剖分,则称为$ z $打结,如果它具有单个曲折(逆转)。三角剖分上的$ z $定向是最小的锯齿形集合,它覆盖了一组边缘。如果从$ z $ - 方向通过它沿不同的方向通过它的曲折,则是I型的边缘,否则该边缘是II型。如果$ z $方向的所有曲折都完全包含II型任何边缘之后I型的两个边缘,则据说$ z $的三角剖分为$ z $ - 均匀的。我们描述了一种算法,将每个$ z $ - 均匀三角转移到其他$ z $ - 均匀的三角剖分,这也是$ z $的。
A triangulation is called $z$-knotted if it has a single zigzag (up to reversing). A $z$-orientation on a triangulation is a minimal collection of zigzags which double covers the set of edges. An edge is of type I if zigzags from the $z$-orientation pass through it in different directions, otherwise this edge is of type II. If all zigzags from the $z$-orientation contain precisely two edges of type I after any edge of type II, then the $z$-oriented triangulation is said to be $z$-homogeneous. We describe an algorithm transferring each $z$-homogeneous trianguation to other $z$-homogeneous triangulation which is also $z$-knotted.