论文标题

$ l_ \ infty $ - 在Barzdell的单一代数的综合体上的结构

$L_\infty$-structure on Barzdell's complex for monomial algebras

论文作者

Redondo, María Julia, Bertone, Fiorela Rossi

论文摘要

让$ a $为特征零的字段$ \ bbbk $上的单一协会有限维数。众所周知,可以使用Bardzell的Complex $ b(a)$计算$ a $的Hochschild共同体。本文的目的是描述$ b(a)$上的解释$ l_ \ infty $ - 结构,该结构在$ b(a)$和hochschild complect $ c(a)$ c(a)$ a $ a $之间引起$ l_ \ infty $ -algebras的弱等效性。这使我们能够用$ 2 $ in $ b(a)$的$ 2 $的元素来描述毛勒 - 卡丹方程。最后,当$ a $是截短的代数时,我们进行具体的计算,我们证明Bardzell对激进平方零代数的综合体实际上是DG-Lie代数。

Let $A$ be a monomial associative finite dimensional algebra over a field $\Bbbk$ of characteristic zero. It is well known that the Hochschild cohomology of $A$ can be computed using Bardzell's complex $B(A)$. The aim of this article is to describe an explict $L_\infty$-structure on $B(A)$ that induces a weak equivalence of $L_\infty$-algebras between $B(A)$ and the Hochschild complex $C(A)$ of $A$. This allows us to describe the Maurer-Cartan equation in terms of elements of degree $2$ in $B(A)$. Finally, we make concrete computations when $A$ is a truncated algebra, and we prove that Bardzell's complex for radical square zero algebras is in fact a dg-Lie algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源