论文标题
在非组织问题中分解解决方案的方法
Splitting methods for solution decomposition in nonstationary problems
论文作者
论文摘要
在近似非组织问题的解决方案中,使用各种方法从许多简单的(子)问题中计算新的时间级别。其中包括分裂方法。标准拆分方案基于操作员的一个或另一个添加剂分解为“简单”的操作员,这些操作员更方便/更容易实现计算机,并使用不均匀的(显式(显式无限))时间近似。在本文中,提出了一类新的拆分方案,其特征是解决方案的加法表示,而不是对应于问题的操作员(称为问题运算符)。所提出的分裂的一个特定特征是,所得的单个溶液组件的耦合方程由溶液组件的时间导数组成。所提出的方法是由各种应用的动机,包括多尺度方法,域分解等,在该应用程序上解决了空间局部问题并用于计算解决方案。无条件稳定的分裂方案是为一阶进化方程式构建的,该方程在有限的希尔伯特空间中被认为。在我们的分裂算法中,我们考虑了系统的主要运算符和操作员的分解。我们的目标是提供一个结合时间分裂算法和空间分解及其分析的一般框架。框架的应用将分别研究。
In approximating solutions of nonstationary problems, various approaches are used to compute the solution at a new time level from a number of simpler (sub-)problems. Among these approaches are splitting methods. Standard splitting schemes are based on one or another additive splitting of the operator into "simpler" operators that are more convenient/easier for the computer implementation and use inhomogeneous (explicitly-implicit) time approximations. In this paper, a new class of splitting schemes is proposed that is characterized by an additive representation of the solution instead of the operator corresponding to the problem (called problem operator). A specific feature of the proposed splitting is that the resulting coupled equations for individual solution components consist of the time derivatives of the solution components. The proposed approaches are motivated by various applications, including multiscale methods, domain decomposition, and so on, where spatially local problems are solved and used to compute the solution. Unconditionally stable splitting schemes are constructed for a first-order evolution equation, which is considered in a finite-dimensional Hilbert space. In our splitting algorithms, we consider the decomposition of both the main operator of the system and the operator at the time derivative. Our goal is to provide a general framework that combines temporal splitting algorithms and spatial decomposition and its analysis. Applications of the framework will be studied separately.