论文标题
在没有声音范围的情况下确定哈勃常数:来自银河系调查的测量
Determining the Hubble Constant without the Sound Horizon: Measurements from Galaxy Surveys
论文作者
论文摘要
几何信息的两个来源在星系功率谱中编码:重组时的声音范围和物质辐射平等时的地平线。使用Pantheon Supernovae的$ω_m$ PRIORS分析Boss DR12 Galaxy Power Spectra,但在$ω_b$上没有先验,我们从第二刻度上获得$ H_0 $的约束,找到$ H_0 = $ H_0 = 65.1^{+3.0} _ { - 5.4} \,\ mathrm {km} \,\ mathrm {s}^{ - 1} \ 1} \ Mathrm {mpc}^{ - 1} $;这与95 \%置信度的SH0E的最佳拟合不同。如果$ω_m$受到未校准的BAO的约束:$ H_0 = 65.6^{+3.4} _ { - 5.5} \,\ Mathrm {km} \,\ Mathrm {s}^}^{ - 1}^{ - 1} \ Mathrm {mpc}^^^$ 1,则获得类似的结果。添加类似镜头的结果来自Baxter \&Sherwin 2020,后部转移到$ 70.6^{+3.7} _ { - 5.0} \,\ Mathrm {Km} \,\ Mathrm {Km} \,\ \ Mathrm {S}}^{ - 1}^{ - 1}^{ - 1} \ Mathrm}使用模拟数据,Fisher分析和比例切割,我们证明了我们的约束并未从声音范围尺度中收到重要信息。由于许多模型通过添加新物理学来改变声音范围来解决$ H_0 $的争议,因此我们的测量是重组之前对标准宇宙学的一致性测试。一个简单的预测表明,此类约束可以达到$σ_{h_0} \ simeq 1.6 \,\ Mathrm {km} \,\ Mathrm {s}^{ - 1} \ 1} \ Mathrm {Mpc}
Two sources of geometric information are encoded in the galaxy power spectrum: the sound horizon at recombination and the horizon at matter-radiation equality. Analyzing the BOSS DR12 galaxy power spectra using perturbation theory with $Ω_m$ priors from Pantheon supernovae but no priors on $Ω_b$, we obtain constraints on $H_0$ from the second scale, finding $H_0 = 65.1^{+3.0}_{-5.4}\,\mathrm{km}\,\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$; this differs from the best-fit of SH0ES at 95\% confidence. Similar results are obtained if $Ω_m$ is constrained from uncalibrated BAO: $H_0 = 65.6^{+3.4}_{-5.5}\,\mathrm{km}\,\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$. Adding the analogous lensing results from Baxter \& Sherwin 2020, the posterior shifts to $70.6^{+3.7}_{-5.0}\,\mathrm{km}\,\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$. Using mock data, Fisher analyses, and scale-cuts, we demonstrate that our constraints do not receive significant information from the sound horizon scale. Since many models resolve the $H_0$ controversy by adding new physics to alter the sound horizon, our measurements are a consistency test for standard cosmology before recombination. A simple forecast indicates that such constraints could reach $σ_{H_0} \simeq 1.6\,\mathrm{km}\,\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$ in the era of Euclid.