论文标题

贝叶斯神经网络和降低维度

Bayesian neural networks and dimensionality reduction

论文作者

Sen, Deborshee, Papamarkou, Theodore, Dunson, David

论文摘要

在进行非线性维度降低和特征学习时,通常可以假设数据位于较低的歧管附近。针对此类问题的一类基于模型的方法包括未知非线性回归函数中的潜在变量;这包括高斯流程潜在变量模型和变异自动编码器(VAE)作为特殊情况。 VAE是人工神经网络(ANN),采用近似值以使计算可进行。但是,当前的实施在估计参数,预测密度和较低维度子空间时缺乏足够的不确定性量化,并且在实践中可能是不稳定的,并且在实践中缺乏可解释性。我们试图通过在具有潜在变量的ANN模型中部署Markov链蒙特卡洛采样算法(MCMC)来解决这些问题。我们通过对ANN参数施加约束以及使用锚点来解决可识别性问题。这在模拟和真实的数据示例中证明了这一点。我们发现,当前的MCMC抽样方案在涉及潜在变量的神经网络中面临着基本挑战,激发了新的研究方向。

In conducting non-linear dimensionality reduction and feature learning, it is common to suppose that the data lie near a lower-dimensional manifold. A class of model-based approaches for such problems includes latent variables in an unknown non-linear regression function; this includes Gaussian process latent variable models and variational auto-encoders (VAEs) as special cases. VAEs are artificial neural networks (ANNs) that employ approximations to make computation tractable; however, current implementations lack adequate uncertainty quantification in estimating the parameters, predictive densities, and lower-dimensional subspace, and can be unstable and lack interpretability in practice. We attempt to solve these problems by deploying Markov chain Monte Carlo sampling algorithms (MCMC) for Bayesian inference in ANN models with latent variables. We address issues of identifiability by imposing constraints on the ANN parameters as well as by using anchor points. This is demonstrated on simulated and real data examples. We find that current MCMC sampling schemes face fundamental challenges in neural networks involving latent variables, motivating new research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源