论文标题

增强了具有独立性第二的图形的Erdős-LovászTihany猜想

Enhancing the Erdős-Lovász Tihany Conjecture for graphs with independence number two

论文作者

Wang, Yue, Yu, Gexin

论文摘要

令$ s \ ge2 $和$ t \ ge2 $为整数。图$ g $是$(s,t)$ - \ emph {分解},如果$ v(g)$可以将$ v(g)$划分为两个集合$ s $和$ t $,从而使$χ(g [s])\ geq s $和$χ(g [t])\ geq t $。著名的Erdős-LovászTihany从1968年的猜想指出,每个图形$ g $的色度$χ(g)= S+T-1 $都大于其集团数字$ω(g)$是$(s,t)$ - 可覆盖。在本文中,我们证明了Erdős-LovászTihany猜想的增强版本,该图表具有第二个独立性。也就是说,对于每个图$ g $,$χ(g)= s+t-1>ω(g)+1 $ is $(s,t+1)$ - 可分配。有一些例子表明,这种结果是最好的。

Let $s\ge2$ and $t\ge2$ be integers. A graph $G$ is $(s,t)$-\emph{splittable} if $V(G)$ can be partitioned into two sets $S$ and $T$ such that $χ(G[S])\geq s$ and $χ(G[T])\geq t$. The well-known Erdős-Lovász Tihany Conjecture from 1968 states that every graph $G$ whose chromatic number $χ(G)=s+t-1$ is more than its clique number $ω(G)$ is $(s,t)$-splittable. In this paper, we prove an enhanced version of the Erdős-Lovász Tihany Conjecture for graphs with independence number two. That is, for every graph $G$ with $χ(G)=s+t-1>ω(G)+1$ is $(s,t+1)$-splittable. There are examples showing that this result is best possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源