论文标题
Vlasov-Poisson系统的点电荷的稳定性:径向案例
Stability of a point charge for the Vlasov-Poisson system: the radial case
论文作者
论文摘要
我们将带有初始数据的Vlasov-Poisson系统视为点电荷的小,径向,绝对连续的扰动。我们表明该解决方案是全局的,并且通过沿线性流动流的轨迹进行了修改的散射来分散到无穷大。 这是通过线性化方程的精确整合来完成的,然后在动作角度坐标中对扰动的汉密尔顿方程进行分析。
We consider the Vlasov-Poisson system with initial data a small, radial, absolutely continuous perturbation of a point charge. We show that the solution is global and disperses to infinity via a modified scattering along trajectories of the linearized flow. This is done by an exact integration of the linearized equation, followed by the analysis of the perturbed Hamiltonian equation in action-angle coordinates.