论文标题

用卷积自动编码器进行指纹表现攻击检测的异常检测

Anomaly Detection with Convolutional Autoencoders for Fingerprint Presentation Attack Detection

论文作者

Kolberg, Jascha, Grimmer, Marcel, Gomez-Barrero, Marta, Busch, Christoph

论文摘要

近年来,基于指纹的生物特征验证系统的普及大大增加了。但是,加上许多优势,生物识别系统仍然容易受到演示攻击(PAS)的影响。特别是,这适用于无监督的应用程序,其中可能发生的新攻击可能发生。因此,呈现攻击检测(PAD)方法用于确定样品是源于真正的主题还是来自演示攻击工具(PAI)。在这种情况下,大多数作品都致力于解决垫子作为两类分类问题,其中包括对善意和PA样品进行培训模型。尽管报告了良好的检测率,但这些方法仍然面临难以从未知材料中检测PAIS的困难。为了解决这个问题,我们提出了一种基于仅在真正的样品(即一级)上训练的自动编码器(AES)的新垫技术,该技术在短波红外域中被捕获。在对19,711善意和4,339张PA图像的数据库的实验评估中,包括45种不同的PAI物种,检测出误差率(D-EER)为2.00%。此外,将我们最佳性能的AE模型与进一步的单级分类器(支持向量机,高斯混合模型)进行了比较。结果显示了AE模型的有效性,因为它明显优于先前提出的方法。

In recent years, the popularity of fingerprint-based biometric authentication systems significantly increased. However, together with many advantages, biometric systems are still vulnerable to presentation attacks (PAs). In particular, this applies for unsupervised applications, where new attacks unknown to the system operator may occur. Therefore, presentation attack detection (PAD) methods are used to determine whether samples stem from a bona fide subject or from a presentation attack instrument (PAI). In this context, most works are dedicated to solve PAD as a two-class classification problem, which includes training a model on both bona fide and PA samples. In spite of the good detection rates reported, these methods still face difficulties detecting PAIs from unknown materials. To address this issue, we propose a new PAD technique based on autoencoders (AEs) trained only on bona fide samples (i.e. one-class), which are captured in the short wave infrared domain. On the experimental evaluation over a database of 19,711 bona fide and 4,339 PA images including 45 different PAI species, a detection equal error rate (D-EER) of 2.00% was achieved. Additionally, our best performing AE model is compared to further one-class classifiers (support vector machine, Gaussian mixture model). The results show the effectiveness of the AE model as it significantly outperforms the previously proposed methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源