论文标题

学习自动编码推荐人的结构

Learning the Structure of Auto-Encoding Recommenders

论文作者

Khawar, Farhan, Poon, Leonard Kin Man, Zhang, Nevin Lianwen

论文摘要

自动编码器推荐人最近在推荐任务中显示了最先进的性能,因为它们能够有效地建模非线性项目关系。但是,现有的自动编码器推荐人使用完全连接的神经网络层,并且不采用结构学习。这可能会导致效率低下的培训,尤其是当数据稀疏时,如协作过滤时通常发现的时候。前面提到的导致概括能力降低和性能降低。在本文中,我们通过利用协作过滤域中存在的固有项目组来为自动编码器推荐人介绍结构学习。由于项目的性质,我们知道某些项目与其他项目更相关。基于此,我们提出了一种方法,该方法首先学习相关项目组,然后使用此信息来确定自动编码神经网络的连接结构。这导致一个稀疏连接的网络。这种稀疏的结构可以看作是指导网络培训的先验。从经验上讲,我们证明了所提出的结构学习使自动编码器能够收敛​​到比完全连接的网络的频谱规范和概括误差要小得多的局部最优值。所得稀疏网络在多个基准的数据集上的最新方法大大优于\ textsc {mult-vae/mult-dae},即使使用了相同数量的参数和拖鞋。它也具有更好的冷启动性能。

Autoencoder recommenders have recently shown state-of-the-art performance in the recommendation task due to their ability to model non-linear item relationships effectively. However, existing autoencoder recommenders use fully-connected neural network layers and do not employ structure learning. This can lead to inefficient training, especially when the data is sparse as commonly found in collaborative filtering. The aforementioned results in lower generalization ability and reduced performance. In this paper, we introduce structure learning for autoencoder recommenders by taking advantage of the inherent item groups present in the collaborative filtering domain. Due to the nature of items in general, we know that certain items are more related to each other than to other items. Based on this, we propose a method that first learns groups of related items and then uses this information to determine the connectivity structure of an auto-encoding neural network. This results in a network that is sparsely connected. This sparse structure can be viewed as a prior that guides the network training. Empirically we demonstrate that the proposed structure learning enables the autoencoder to converge to a local optimum with a much smaller spectral norm and generalization error bound than the fully-connected network. The resultant sparse network considerably outperforms the state-of-the-art methods like \textsc{Mult-vae/Mult-dae} on multiple benchmarked datasets even when the same number of parameters and flops are used. It also has a better cold-start performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源