论文标题

多维持续部分的功能分析:第二部分

Functional analysis behind a Family of Multidimensional Continued Fractions: Part II

论文作者

Amburg, Ilya, Garrity, Thomas

论文摘要

本文直接延续了“多维持续分数背后的功能分析:第一部分”,在该家族中,我们开始探索三角分区图的转移操作员背后的功能分析,该家族包括许多(如果不是大多数,众所周知的多维持续持续分数)。这使我们现在可以找到与指定的Banach空间上选择的三角分区图相关的转移操作员特征值1的本本特征。我们继续证明,转移操作员被视为作用于希尔伯特空间的一维家族,与精选的三角分区图相关的是Trace Class Zero的核。我们通过得出与选择的三角分区图关联的高斯-Kuzmin分布来结束。

This paper is a direct continuation of "Functional analysis behind a Family of Multidimensional Continued Fractions: Part I," in which we started the exploration of the functional analysis behind the transfer operators for triangle partition maps, a family that includes many, if not most, well-known multidimensional continued fraction algorithms. This allows us now to find eigenfunctions of eigenvalue 1 for transfer operators associated with select triangle partition maps on specified Banach spaces. We proceed to prove that the transfer operators, viewed as acting on one-dimensional families of Hilbert spaces, associated with select triangle partition maps are nuclear of trace class zero. We finish by deriving Gauss-Kuzmin distributions associated with select triangle partition maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源