论文标题

一类连续时间状态空间模型的基于得分的参数估计

Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models

论文作者

Beskos, Alexandros, Crisan, Dan, Jasra, Ajay, Kantas, Nikolas, Ruzayqat, Hamza

论文摘要

我们考虑一类连续时间状态空间模型的参数估计问题。特别是,我们探讨了部分观察到的扩散的情况,并且数据也根据扩散过程得出。基于得分函数的标准身份,我们考虑两种基于粒子滤波器的方法来估计得分函数。这两种方法都依赖于在线估计算法来获得$ \ MATHCAL {O}(n^2)$成本的得分函数,并带有$ n \ in \ Mathbb {n} $中的粒子数。第一种方法采用简单的Euler离散化和标准粒子SmoOTHOTHE,其成本为$ \ MATHCAL {O}(n^2 +nδ_l^{ - 1})$每单位时间,其中$δ_l= 2^{ - l} $,$ l} $,$ l \ in \ MATHBB {n} n} n} n} $ _0 $,IS TIMESCRITIAFFIAIDS。第二种方法是新的,并基于一种新颖的扩散桥结构。它在连续的时间内产生了一种新的向后类型Feynman-kac公式的得分函数,并与粒子方法一起呈现近似值。考虑到时间限制,成本为$ \ MATHCAL {o}(n^2δ_l^{ - 1})$每单位时间。为了提高计算成本,我们考虑得分功能的多级方法。我们在几个数值示例中通过随机梯度方法说明了我们的参数估计方法。

We consider the problem of parameter estimation for a class of continuous-time state space models. In particular, we explore the case of a partially observed diffusion, with data also arriving according to a diffusion process. Based upon a standard identity of the score function, we consider two particle filter based methodologies to estimate the score function. Both methods rely on an online estimation algorithm for the score function of $\mathcal{O}(N^2)$ cost, with $N\in\mathbb{N}$ the number of particles. The first approach employs a simple Euler discretization and standard particle smoothers and is of cost $\mathcal{O}(N^2 + NΔ_l^{-1})$ per unit time, where $Δ_l=2^{-l}$, $l\in\mathbb{N}_0$, is the time-discretization step. The second approach is new and based upon a novel diffusion bridge construction. It yields a new backward type Feynman-Kac formula in continuous-time for the score function and is presented along with a particle method for its approximation. Considering a time-discretization, the cost is $\mathcal{O}(N^2Δ_l^{-1})$ per unit time. To improve computational costs, we then consider multilevel methodologies for the score function. We illustrate our parameter estimation method via stochastic gradient approaches in several numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源