论文标题

用适当的分辨率设置理论

Set theory with a proper class of indiscernibles

论文作者

Enayat, Ali

论文摘要

我们调查了ZFC集合理论的扩展(用扩展语言),该理论规定了在宇宙上存在适当的不可分割的类别。本文的主要结果之一表明,ZFC扩展的纯粹设定理论后果与通过(征税)方案增强ZFC获得的集合理论系统的定理相吻合,其实例在Metatheory中对每个自然数量$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ nsev a a $ n $ $κ最初是最初的nesce ance nesce nesce nesce nescement $ n $ n $。 $σ_n$ - 元素的子模型。

We investigate an extension of ZFC set theory (in an extended language) that stipulates the existence of a proper class of indiscernibles over the universe. One of the main results of the paper shows that the purely set-theoretical consequences of this extension of ZFC coincide with the theorems of the system of set theory obtained by augmenting ZFC with the (Levy) scheme whose instances assert, for each natural number $n$ in the metatheory, that there is an $n$-Mahlo cardinal $κ$ with the property that the initial segment of the universe determined by $κ$ is a $Σ_n$-elementary submodel of the universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源