论文标题
弥合最佳轨迹计划与安全性控制之间的差距,并应用于自动驾驶汽车
Bridging the Gap between Optimal Trajectory Planning and Safety-Critical Control with Applications to Autonomous Vehicles
论文作者
论文摘要
我们解决了优化动态系统性能的问题,同时始终满足硬安全性限制。实施最佳控制解决方案受实时得出所需的计算成本的限制,尤其是当约束变得活跃时,以及依靠简单的线性动力学,简单的目标函数和忽略噪声的需要。最近提出的控制屏障函数(CBF)方法可用于以次优性能为代价进行安全关键控制。在本文中,我们开发了一个实时控制框架,该框架结合了通过最佳控制生成的最佳轨迹以及提供安全保证的计算高效的CBF方法。我们使用汉密尔顿分析来获得线性或线性化系统的可疗法最佳解决方案,然后采用高阶CBFS(HOCBFS)和控制Lyapunov函数(CLFS)来考虑具有任意相对程度的约束并分别跟踪最佳状态。我们进一步展示了如何在任意相对程度系统中处理噪声。然后将所提出的框架应用于连接和自动化车辆(CAVS)的最佳交通合并问题,在该问题中,目标是将每个CAV的旅行时间和能源消耗最小化,从而受到速度,加速度和速度依赖性安全限制。此外,当考虑到更复杂的目标功能,非线性动力学和乘客舒适性要求,分析性最佳控制解决方案是不可用的,我们将HOCBF方法调整为此类问题。包括模拟示例,以比较提出的框架与最佳解决方案的性能(如果有),以及由人类驱动的车辆提供的基线,结果显示所有指标的显着改善。
We address the problem of optimizing the performance of a dynamic system while satisfying hard safety constraints at all times. Implementing an optimal control solution is limited by the computational cost required to derive it in real time, especially when constraints become active, as well as the need to rely on simple linear dynamics, simple objective functions, and ignoring noise. The recently proposed Control Barrier Function (CBF) method may be used for safety-critical control at the expense of sub-optimal performance. In this paper, we develop a real-time control framework that combines optimal trajectories generated through optimal control with the computationally efficient CBF method providing safety guarantees. We use Hamiltonian analysis to obtain a tractable optimal solution for a linear or linearized system, then employ High Order CBFs (HOCBFs) and Control Lyapunov Functions (CLFs) to account for constraints with arbitrary relative degrees and to track the optimal state, respectively. We further show how to deal with noise in arbitrary relative degree systems. The proposed framework is then applied to the optimal traffic merging problem for Connected and Automated Vehicles (CAVs) where the objective is to jointly minimize the travel time and energy consumption of each CAV subject to speed, acceleration, and speed-dependent safety constraints. In addition, when considering more complex objective functions, nonlinear dynamics and passenger comfort requirements for which analytical optimal control solutions are unavailable, we adapt the HOCBF method to such problems. Simulation examples are included to compare the performance of the proposed framework to optimal solutions (when available) and to a baseline provided by human-driven vehicles with results showing significant improvements in all metrics.