论文标题

最佳的最佳臂识别方法

Optimal Best-Arm Identification Methods for Tail-Risk Measures

论文作者

Agrawal, Shubhada, Koolen, Wouter M., Juneja, Sandeep

论文摘要

有条件的价值风险(CVAR)和价值风险(VAR)是金融和保险行业的流行尾风措施,以及在高度可靠,关键的关键性不确定的环境中,通常是基本的概率分布是重尾的。我们使用多臂匪徒最佳武器识别框架,并考虑从有限的CVAR,VAR或加权的CVAR和MEAN中识别最小的CVAR,VAR或加权总和的问题。后者捕获了金融中常见的风险返回权衡。我们的主要贡献是一种最佳的$δ$正确的算法,该算法作用于一般武器,包括重型分布,并均与所需的预期样品数量匹配($δ$接近$ 0 $)。该算法需要在概率措施的空间中解决非凸优化问题,这需要精致的分析。一路上,我们开发了新的非质子经验可能性的浓度不平等,用于尾风量,这比流行的基于截断的经验估计量更紧密。

Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk measures in finance and insurance industries as well as in highly reliable, safety-critical uncertain environments where often the underlying probability distributions are heavy-tailed. We use the multi-armed bandit best-arm identification framework and consider the problem of identifying the arm from amongst finitely many that has the smallest CVaR, VaR, or weighted sum of CVaR and mean. The latter captures the risk-return trade-off common in finance. Our main contribution is an optimal $δ$-correct algorithm that acts on general arms, including heavy-tailed distributions, and matches the lower bound on the expected number of samples needed, asymptotically (as $δ$ approaches $0$). The algorithm requires solving a non-convex optimization problem in the space of probability measures, that requires delicate analysis. En-route, we develop new non-asymptotic empirical likelihood-based concentration inequalities for tail-risk measures which are tighter than those for popular truncation-based empirical estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源