论文标题
Riccati二次多项式差异系统的相肖像
Phase Portrait of the Riccati Quadratic Polynomial Differential Systems
论文作者
论文摘要
在本文中,我们表征了riccati二次多项式差异系统的相肖像$ \ dot {x} =α_2(x),\ quad \ dot \ dot {y} = ky^2 +β_1 +β_1(x) 使用$(x,y) $ k \ neq0 $(否则该系统是Lienard差异系统),$β_1(x)$最多是$ 1 $,$ 1 $,$α_2(x)$和$γ_2(x)$ polythomials的最多2(x)$ 2(x)$ 2(x)$ 2,最高学位,$ a^yes $ y y y y y y y y y y y y y y y y^y^2 +^2 +^2 +β2(x)(x) 2。我们在庞加罗磁盘中对他们的相肖像进行完整描述
In this paper we characterize the phase portrait of the Riccati quadratic polynomial differential systems $$\dot{x}= α_2(x),\quad\dot{y} = ky^2+β_1(x) y + γ_2(x), $$ with $(x,y)\in\mathbb{R}^2$, $γ_2(x)$ non-zero (otherwise the system is a Bernoulli differential system), $k\neq0$ (otherwise the system is a Lienard differential system), $β_ 1(x)$ a polynomial of degree at most $1$, $α_ 2(x)$ and $γ_ 2(x)$ polynomials of degree at most 2, and the maximum of the degrees of $ α_2(x)$ and $k y^2+β_1(x) y + γ_2(x)$ is 2. We give the complete description of their phase portraits in the Poincare disk