论文标题
一些独特性导致准线性下均质问题
Some uniqueness results in quasilinear subhomogeneous problems
论文作者
论文摘要
我们通过最近在\ cite {dfmst}中提供的标准为准线性椭圆问题建立了唯一性结果。我们将其应用于广义的$ p $ - 拉普拉斯次均质问题,这些问题可能会接受多种非平凡的非统计解决方案。基于广义的隐藏凸度结果,我们表明独特性在强烈的积极解决方案和非负全球最小化器中存在。还对涉及非均匀运营商的问题作为所谓的$(p,r)$ - 拉普拉斯人也得到了处理。
We establish uniqueness results for quasilinear elliptic problems through the criterion recently provided in \cite{DFMST}. We apply it to generalized $p$-Laplacian subhomogeneous problems that may admit multiple nontrivial nonnegative solutions. Based on a generalized hidden convexity result, we show that uniqueness holds among strongly positive solutions and nonnegative global minimizers. Problems involving nonhomogeneous operators as the so-called $(p,r)$-Laplacian are also treated.