论文标题

QAC $^0 $近似平价的复杂性

Bounds on the QAC$^0$ Complexity of Approximating Parity

论文作者

Rosenthal, Gregory

论文摘要

QAC电路是具有一量形大门的量子电路和任意Arity的Toffoli大门。 QAC $^0 $电路是恒定深度的QAC电路,是AC $^0 $电路的量子类似物。我们证明了以下内容: 所有$ d \ ge 7 $和$ \ varepsilon> 0 $都有一个深度 - $ d $ d $ qac电路$ \ qu \ exp(\ mathrm {poly}(n^{1/d})\ log(n/\ varepsilon)$,$ bullet $ $输入。以前,无论大小如何,subogarithmic深度的QAC电路是否可以近似平均值。 $ \ bullet $我们引入了一类“主要是古典”的QAC电路,其中包括我们电路的主要组成部分,从上上限,证明了较小的下限,对低密度的大小(主要是经典的QAC电路),这些QAC电路近似于该组件。 $ \ bullet $任意深度 - $ d $ qac电路至少需要$ω(n/d)$多价门才能实现$ 1/2 + \ exp(-o(n/d))$均等的近似值。当$ d =θ(\ log n)$时,这几乎匹配了一个简单的$ o(n)$大小上限,以准确计算平等。 $ \ bullet $ QAC电路最多有两个层的多价门,无法实现$ 1/2 + \ exp(-o(n))$均等的近似值,甚至是非均匀的。以前只知道,这样的电路无法完全以足够大的$ n $来清洁平价。 证明使用一种新的正常形式,用于量子电路可能具有独立感兴趣的量子电路,并基于减少构建猫状态的某些概括的问题,我们在类似的catyōkai之后将其命名为“ Nekomata”。

QAC circuits are quantum circuits with one-qubit gates and Toffoli gates of arbitrary arity. QAC$^0$ circuits are QAC circuits of constant depth, and are quantum analogues of AC$^0$ circuits. We prove the following: $\bullet$ For all $d \ge 7$ and $\varepsilon>0$ there is a depth-$d$ QAC circuit of size $\exp(\mathrm{poly}(n^{1/d}) \log(n/\varepsilon))$ that approximates the $n$-qubit parity function to within error $\varepsilon$ on worst-case quantum inputs. Previously it was unknown whether QAC circuits of sublogarithmic depth could approximate parity regardless of size. $\bullet$ We introduce a class of "mostly classical" QAC circuits, including a major component of our circuit from the above upper bound, and prove a tight lower bound on the size of low-depth, mostly classical QAC circuits that approximate this component. $\bullet$ Arbitrary depth-$d$ QAC circuits require at least $Ω(n/d)$ multi-qubit gates to achieve a $1/2 + \exp(-o(n/d))$ approximation of parity. When $d = Θ(\log n)$ this nearly matches an easy $O(n)$ size upper bound for computing parity exactly. $\bullet$ QAC circuits with at most two layers of multi-qubit gates cannot achieve a $1/2 + \exp(-o(n))$ approximation of parity, even non-cleanly. Previously it was known only that such circuits could not cleanly compute parity exactly for sufficiently large $n$. The proofs use a new normal form for quantum circuits which may be of independent interest, and are based on reductions to the problem of constructing certain generalizations of the cat state which we name "nekomata" after an analogous cat yōkai.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源