论文标题

零射击域的概括

Zero Shot Domain Generalization

论文作者

Maniyar, Udit, J, Joseph K, Deshmukh, Aniket Anand, Dogan, Urun, Balasubramanian, Vineeth N

论文摘要

标准监督学习设置假定培训数据和测试数据来自相同的分布(域)。域的概括(DG)方法试图学习一个模型,该模型在从多个域进行培训时,将概括为一个新的看不见的域。我们将DG扩展到更具挑战性的环境,在这里,看不见的域的标签空间也可能会改变。我们将这个问题介绍为零击领域的概括(据我们所知,这是第一个这样的工作),该模型跨新领域以及这些域中的新阶层都概括了。我们提出了一个简单的策略,该策略有效利用了类的语义信息,以适应现有的DG方法以满足零击域域概括的需求。我们评估了CIFAR-10,CIFAR-100,F-MNIST和PACS数据集的提议方法,建立了强大的基准,以促进这一新的研究方向的兴趣。

Standard supervised learning setting assumes that training data and test data come from the same distribution (domain). Domain generalization (DG) methods try to learn a model that when trained on data from multiple domains, would generalize to a new unseen domain. We extend DG to an even more challenging setting, where the label space of the unseen domain could also change. We introduce this problem as Zero-Shot Domain Generalization (to the best of our knowledge, the first such effort), where the model generalizes across new domains and also across new classes in those domains. We propose a simple strategy which effectively exploits semantic information of classes, to adapt existing DG methods to meet the demands of Zero-Shot Domain Generalization. We evaluate the proposed methods on CIFAR-10, CIFAR-100, F-MNIST and PACS datasets, establishing a strong baseline to foster interest in this new research direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源