论文标题
在非本地Hénon-Gelfand-Liouville方程的稳定和有限的摩尔斯索引解决方案上
On stable and finite Morse index solutions of the nonlocal Hénon-Gelfand-Liouville equation
论文作者
论文摘要
我们考虑非本地Hénon-Gelfand-Liouville问题$$ (-Δ)^s u = | x |^a e^u \ quad \ mathrm {in} \ quad \ quad \ mathbb r^n,$ s \ in(0,1)$,$ a> 0 $和$ n> 2s $的每个$ s \ in(0,1)$。我们证明了使用重新论证的上述方程解决方案的单调性公式。我们将此公式与抛弃分析论证和技术积分估计一起应用,以确定有限摩尔斯指数解决方案的不存在 $$ \ dfrac {γ(\ frac n2)γ}} {γ(\ frac {n-2s} {2} {2})} \ left(s+\ frac a2 \ right)> \ dfrac {γ^2(\ frac {n+2s} {4})}} {γ^2(\ frac {n-2s} {4} {4})}}。$$
We consider the nonlocal Hénon-Gelfand-Liouville problem $$ (-Δ)^s u = |x|^a e^u\quad\mathrm{in}\quad \mathbb R^n, $$ for every $s\in(0,1)$, $a>0$ and $n>2s$. We prove a monotonicity formula for solutions of the above equation using rescaling arguments. We apply this formula together with blow-down analysis arguments and technical integral estimates to establish non-existence of finite Morse index solutions when $$\dfrac{Γ(\frac n2)Γ(s)}{Γ(\frac{n-2s}{2})}\left(s+\frac a2\right)> \dfrac{Γ^2(\frac{n+2s}{4})}{Γ^2(\frac{n-2s}{4})}.$$